Monitoring dissolved organic matter using submersible tryptophan-like fluorometers

Kieran Khamis1,2, J. Sorensen3, C. Bradley2, D. Hannah2, R. Stevens1

1 RS Hydro
2 School of Geog. Earth & Env. Sci. University of Birmingham
3 British Geological Survey
What is fluorescence?

Fluorescence: a form of luminescence which occurs over short time scales at the molecular/atomic level.

How does it work?

Energy levels diagram showing transitions between ground state S_0 and excited state S_1. Transitions include absorption and non-radiative transitions, leading to fluorescence.
Natural fluorescent compounds

• The fluorescent spectra of compounds important for water quality monitoring have been identified

‘Humic’ matter Chlorophyll Proteins
Excitation wavelength

Emission wavelength

Excitation Emission Matrix (EEM)

Bench top scanning fluorometer

Humic-like compounds (terrestrial origin)

Tryptophan-like peak related to microbial activity + correlated with BOD₅

However...Not suitable for remote field sites or if high resolution records are required.

Fellman et al. (2012) SOTE 39, 149-158

Hudson et al. (2008) Lim. & Oce. 55, 2452
Submersible fluorometers
Challenges to in-situ monitoring

- Quenching – e.g. temperature;
- Matrix interference – e.g. suspended particles in water column;
- Inner-filtering - concentration effect;
- Measurement repeatability - between/within sites and between sensors;
- To date no rigorous tests of submersible tryptophan fluorometers have been conducted.
The objectives of this study were to:

1. Test the performance of two commercially available tryptophan fluorometers in the lab;

2. Develop empirical correction factors to account for fluorescence quenching and matrix interference;

3. Undertake a field trial to assess sensor performance and test correction factors.
Minimum Detection Limit (MDL) and precision

<table>
<thead>
<tr>
<th></th>
<th>T1</th>
<th>T2</th>
<th>C1</th>
<th>C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrated relationship</td>
<td>$y = 0.997x - 0.133$</td>
<td>$y = 1x + 0.0009$</td>
<td>$y = 1x - 0.00007$</td>
<td>$y = 1x + 0.00006$</td>
</tr>
<tr>
<td>Relationship with Varian (ppb)</td>
<td>$y = 0.99x - 0.1255$</td>
<td>$Y = 1x + 0.0022$</td>
<td>$y = 1x + 0.0076$</td>
<td>$y = 0.99x + 0.0129$</td>
</tr>
<tr>
<td>Relationship with Varian (R.U)</td>
<td>$y = 0.002x + 0.0041$</td>
<td>$y = 0.002x + 0.0044$</td>
<td>$y = 0.002x + 0.0044$</td>
<td>$y = 0.002x + 0.0044$</td>
</tr>
<tr>
<td>MDL ± SD</td>
<td>$1.99 ± 0.53$</td>
<td>$1.92 ± 0.57$</td>
<td>$0.17 ± 0.06$</td>
<td>$0.19 ± 0.15$</td>
</tr>
<tr>
<td>Precision: CV (5ppb)</td>
<td>3.03</td>
<td>2.49</td>
<td>0.45</td>
<td>0.22</td>
</tr>
<tr>
<td>(50ppb)</td>
<td>0.03</td>
<td>0.02</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>(400ppb)</td>
<td>3.79</td>
<td>4.86</td>
<td>4.63</td>
<td>6.27</td>
</tr>
<tr>
<td>Accuracy (RMSE)</td>
<td>0.63</td>
<td>0.62</td>
<td>0.57</td>
<td>0.58</td>
</tr>
</tbody>
</table>

significant difference in precision at low concentration
Thermal quenching

Raw data

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Tryptophan signal (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>200</td>
</tr>
<tr>
<td>10</td>
<td>150</td>
</tr>
<tr>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>35</td>
<td>100</td>
</tr>
</tbody>
</table>

Graphs showing the relationship between temperature and tryptophan signal.
Turbidity interference

100 NTU

200 NTU

900 NTU
Turbidity interference (Clay)

- Particle size influences response: attenuation greater with clay.
- Sensor specific responses: differences between and within manufacturers.
- Sensor specific calibrations may be required.
Turbidity interference (silt)

Out of range for 500ppb
Turbidity interference (clay)

Sensor C1
95% CI overlap
> 200 NTU

Sensor C2
95% CI overlap
> 200 NTU

Sensor T1
95% CI overlap
> 200 NTU
Turbidity interference (silt)

Sensor C1

Sensor C2

No 95% CI overlap

Sensor T1

95% CI overlap > 600 NTU

95% CI overlap > 800 NTU
Turbidity correction

Clay (Fullers Earth)

Silt (glacial outwash)
Urban field test site

Urban field test site

Chelsea fluorometer and Manta 2
- Stage
- Turbidity
- EC
- Tw
- Tryptophan

ISCO pump sampler
Field trial
Field trial: raw data
Field trial: corrected data

FE = Fullers Earth (clay) GS = Glacial silt
Field trial: corrected data

- **T1 raw (ppb) vs. Lab tryptophan (ppb)**
 - $R^2 = 0.92$
 - $m = 0.69 \pm 0.04$
 - $c = 0.91 \pm 4.53$

- **T1 silt + Tw correction (ppb) vs. Lab tryptophan (ppb)**
 - $R^2 = 0.88$
 - $m = 0.95 \pm 0.07$
 - $c = -2.41 \pm 5.90$

- **T1 Tw correction (ppb) vs. Lab tryptophan (ppb)**
 - $R^2 = 0.92$
 - $m = 0.74 \pm 0.04$
 - $c = 1.17 \pm 4.55$

- **T1 clay + Tw correction (ppb) vs. Lab tryptophan (ppb)**
 - $R^2 = 0.91$
 - $m = 0.67 \pm 0.04$
 - $c = 7.95 \pm 4.38$
Field trial: corrected data

- For C1 raw (ppb): $R^2 = 0.77$, $m = 0.80 \pm 0.09$, $c = -23.0 \pm 10.84$
- For C1 silt + Tw correction (ppb): $R^2 = 0.56$, $m = 1.04 \pm 0.18$, $c = -14.71 \pm 15.58$
- For C1 Tw correction (ppb): $R^2 = 0.76$, $m = 0.86 \pm 0.10$, $c = -22.4 \pm 10.86$
- For C1 clay + Tw correction (ppb): $R^2 = 0.76$, $m = 0.96 \pm 0.11$, $c = -2.03 \pm 8.75$
Spatial survey (initial result)

All sites: $R^2 = 0.60$

River sites: $R^2 = 0.91$

Habitat type – clear residual pattern

Canal
Pond
River
Effluent

River samples: $R^2 = 0.67$

All samples: $R^2 = 0.72$

River samples: $R^2 = 0.64$
Conclusions

- Quenching of T_1 fluorescence was identified in the lab and varied between sensors (Turner & Chelsea)

- Temperature compensation appears relatively simple but evidence of \textit{hysteresis} requires further investigation

- Sediment particle size influenced sensor response to turbidity increases \textit{(implies site specific calibrations may be necessary)}

- Field tests highlight the potential to develop and apply correction factors to improve in-situ data output during both baseflow and event conditions

- Further work will improve calibration for $\text{BOD}_5 - T_1$ fluorescence
Acknowledgments

NERC and EPSRC (co-funding project)

Les Basford (Nature centre, Birmingham)

Ed Lang and James Chapman (RS Hydro)

Alex Taylor (West Country Rivers Trust)

Richard Johnson and Mel Bickerton (University of Birmingham)

Pete Williams (BGS)